The advent of genetically modified organisms, GMOs, continues to generate a heated debate in many quarters all over the world. This has particularly been fuelled by the adoption of genetic engineering techniques in food production. Transgenic organisms, which are created through exchange of genetic materials between different species of organisms are likely to cause even greater divisions. The use of a genetically engineered organelle is also possible.
The nucleus has been the main target for genetic modification for many years. With advancing research, it has become evident that a number of processes can be undertaken on other organelles to achieve the same results. The organelles that have emerged as the most ideal are chloroplasts and mitochondria. Chloroplasts are only present in plants but mitochondria can be found in both plants and animals cells.
Mitochondria are considered the powerhouse of the cell. They produce energy necessary for most of the cell processes through a process known as oxidative phosphorylation. If they fail, the cell is at risk of dying since the alternative energy production pathways can only sustain it for a limited duration of time. Mitochondria posses a genome just like the nucleus. Their genome is, however, a lot smaller.
One of the theories that have been advanced to explain the presence of genetic material in mitochondria proposes that they were initially independent primitive organisms. They were largely parasitic depending on other unicellular organisms for most of their functions. As they evolved over thousands of years, some of their genome was lost and they could, therefore, not exist on their own. They entered the cell and started a symbiotic relationship. This theory has also been used for chloroplasts.
Chloroplasts are vital to the process of photosynthesis. This is a process that occurs in green plants and involves the use of sunlight energy in food production by a plant cell. These structures have also been established to also play a vital role in processes such as fatty acid synthesis, amino acid synthesis and mounting immune responses by the cells. Chloroplasts posses a DNA that takes on a circular conformation in most cells. Genetic modification of this DNA is passed on to daughter cells through inheritance.
Genome modification involves several steps. The first is gene isolation. This is where the desired gene is identified and obtained either from another cell or by synthesis. Several copies of genes have been studied and isolated and are now available in the genetic library. This may serve as an alternative source. Addition of various elements such as promoter and terminator regions makes the gene active.
Once the gene has been isolated, the next step is to have it inserted into the organelle. This may either be the mitochondria or the chloroplast depending on the organism. For bacterial organisms, this process may be aided by either electric shocking or thermal stimulation. Animal cells are modified through microinjection while plant cells may be subjected to agrobacteria mediated recombination, biolistics or electroporation.
When genetic material is introduced into a cell, it is only this cell that is effected. There is a need to propagate this cell so as to make sure the effects are evident at the level of the organism. This is usually achieved by taking plant cells through a process known as tissue culture. In animals, stem cells are provided with favourable conditions for cell division. The cells are studied to ensure that the transfer process has taken place.
The nucleus has been the main target for genetic modification for many years. With advancing research, it has become evident that a number of processes can be undertaken on other organelles to achieve the same results. The organelles that have emerged as the most ideal are chloroplasts and mitochondria. Chloroplasts are only present in plants but mitochondria can be found in both plants and animals cells.
Mitochondria are considered the powerhouse of the cell. They produce energy necessary for most of the cell processes through a process known as oxidative phosphorylation. If they fail, the cell is at risk of dying since the alternative energy production pathways can only sustain it for a limited duration of time. Mitochondria posses a genome just like the nucleus. Their genome is, however, a lot smaller.
One of the theories that have been advanced to explain the presence of genetic material in mitochondria proposes that they were initially independent primitive organisms. They were largely parasitic depending on other unicellular organisms for most of their functions. As they evolved over thousands of years, some of their genome was lost and they could, therefore, not exist on their own. They entered the cell and started a symbiotic relationship. This theory has also been used for chloroplasts.
Chloroplasts are vital to the process of photosynthesis. This is a process that occurs in green plants and involves the use of sunlight energy in food production by a plant cell. These structures have also been established to also play a vital role in processes such as fatty acid synthesis, amino acid synthesis and mounting immune responses by the cells. Chloroplasts posses a DNA that takes on a circular conformation in most cells. Genetic modification of this DNA is passed on to daughter cells through inheritance.
Genome modification involves several steps. The first is gene isolation. This is where the desired gene is identified and obtained either from another cell or by synthesis. Several copies of genes have been studied and isolated and are now available in the genetic library. This may serve as an alternative source. Addition of various elements such as promoter and terminator regions makes the gene active.
Once the gene has been isolated, the next step is to have it inserted into the organelle. This may either be the mitochondria or the chloroplast depending on the organism. For bacterial organisms, this process may be aided by either electric shocking or thermal stimulation. Animal cells are modified through microinjection while plant cells may be subjected to agrobacteria mediated recombination, biolistics or electroporation.
When genetic material is introduced into a cell, it is only this cell that is effected. There is a need to propagate this cell so as to make sure the effects are evident at the level of the organism. This is usually achieved by taking plant cells through a process known as tissue culture. In animals, stem cells are provided with favourable conditions for cell division. The cells are studied to ensure that the transfer process has taken place.
About the Author:
If you are searching for information about genetically engineered organelle, come to our web pages online today. More details are available at http://www.skinapus.com/for-patients-families now.
No comments:
Post a Comment